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1 Fredholm Theory

1.1 Fredholm operators

Definition 1.1. Let B1, B2 be Banach spaces. An operator T ∈ L(B1, B2) is called
Fredholm if the kernel kerT = {x ∈ B1 : Tx = 0} and the cokernel cokerT = B2/ imT
are finite-dimensional. We define the index if T to be indT = dim kerT−dim cokerT ∈ Z.

Remark 1.1. If T ∈ L(B1, B2), then kerT is a closed subspace of B1. However, imT need
not necessarily be closed: take B1 = B2 = C([0, 1]) and (Tf)(x) =

∫ x
0 f(y) dy.

So this is an algebraic condition. However, this implies an analytic condition on T :

Proposition 1.1. If T ∈ L(B1, B2) and dim cokerT <∞, then imT is closed.

Proof. We may assume T is injective, for otherwise, we can consider T̃ : B1/ kerT → B2

sending x+ kerT 7→ Tx; then im T̃ = imT , and T̃ is injective. Let dim cokerT = n <∞,
and let x1, . . . , xn ∈ B2 be such that x1 + imT, . . . , xn + imT form a basis for cokerT . Let
S : Cn → B2 send (a1, . . . , an) 7→

∑n
j=1 ajxj . Then S is injective, and B2 = imT ⊕ imS.

It follows that T1 : B1 ⊕ Cn → B2 sending (x, a) 7→ Tx + Sa is a bijection. By the open
mapping theorem, T1 is a linear homeomorphism. Then imT = T1(B1 ⊕ {0}) ⊆ B2 is
closed.

1.2 Behavior of the index under perturbation

If dimBj <∞ for j = 1, 2, then

indT = dim kerT − (dimB2 − dim imT ) = dimB1 − dimB2.

Remarkably, for Fredholm operators, this property also extends to a similar property in
the infinite dimensional case.

Theorem 1.1. Let T ∈ L(B1, B2) be a Fredholm operator. If S ∈ L(B1, B2) is such that
‖S‖L(B1,B2) is sufficiently small, then T + S is Fredholm, and ind(T + S) = indT .
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To prove this, we have a lemma.

Lemma 1.1. Let B be a Banach space, and let S ∈ L(B,B) be such that ‖S‖ < 1. Then
1− S has an inverse (so ind(1− S) = 0).

Proof. The Neumann series R =
∑∞

k=0 S
k converges in L(B,B), and R(1−S) = (1−S)R =

1.

Remark 1.2. If T ∈ L(B1, B2) is invertible and ‖S‖ is small, then T + S is invertible:
T + S = T (1 + T−1S) is invertible if ‖S‖ < 1/‖T−1‖.

To prove the theorem, we will reduce to this case.

Proof. Write n+ = dim kerT and n− = dim cokerT . Let R− : Cn− → B2 be injective and
such that B2 = imT ⊕ R−(Cn−) (as we have constructed before). Let e1, . . . , en+ be a
basis for kerT , and let ϕ1, . . . , ϕn+ ∈ B∗1 be such that

ϕj(ek) =

{
1 j = k

0 j 6= k

for all j, k; such continuous, linear forms exist by Hahn-Banach. Let R+ : B1 → Cn+ send
x 7→ (ϕ1(x), . . . , ϕn+(x)). Then R+ is surjective, and R+|kerT is bijective.

Let us introduce the Grushin operator1

P =

[
T R−
R+ 0

]
: B1 ⊕ Cn− → B2 ⊕ Cn+ .

We claim that P is invertible: If P
[
x
a−

]
= 0, then Tx + R−a− = 0 and R+x = 0. Then

a− = 0, so x ∈ kerT . Since R+ is bijective on kerT , we get x = 0. For surjectivity, we
want to solve Tx + R−a− = y and R+x = b. Write y = Tz + R−c−. Then a− = c− and
x− z ∈ kerT , so x = z +

∑
αjej . We can take αj = bj − ϕj(z) for 1 ≤ j ≤ n+.

If ‖S‖ is small enough, then

P̃ =

[
T + S R−
R+ 0

]
is invertible, and we introduce the inverse

E =

[
E E+

E− E−+

]
: B2 ⊕ Cn+ → B1 ⊕ Cn− .

We will finish the proof next time.

1This terminology is not necessarily standard.
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