Math 255B Lecture 1 Notes

Daniel Raban

January 6, 2020

1 Fredholm Theory

1.1 Fredholm operators

Definition 1.1. Let B_1, B_2 be Banach spaces. An operator $T \in \mathcal{L}(B_1, B_2)$ is called **Fredholm** if the kernel ker $T = \{x \in B_1 : Tx = 0\}$ and the cokernel coker $T = B_2 / \operatorname{im} T$ are finite-dimensional. We define the **index** if T to be ind $T = \dim \ker T - \dim \operatorname{coker} T \in \mathbb{Z}$.

Remark 1.1. If $T \in \mathcal{L}(B_1, B_2)$, then ker T is a closed subspace of B_1 . However, im T need not necessarily be closed: take $B_1 = B_2 = C([0, 1])$ and $(Tf)(x) = \int_0^x f(y) \, dy$.

So this is an algebraic condition. However, this implies an analytic condition on T:

Proposition 1.1. If $T \in \mathcal{L}(B_1, B_2)$ and dim coker $T < \infty$, then im T is closed.

Proof. We may assume T is injective, for otherwise, we can consider $\widetilde{T} : B_1 / \ker T \to B_2$ sending $x + \ker T \mapsto Tx$; then $\operatorname{im} \widetilde{T} = \operatorname{im} T$, and \widetilde{T} is injective. Let dim coker $T = n < \infty$, and let $x_1, \ldots, x_n \in B_2$ be such that $x_1 + \operatorname{im} T, \ldots, x_n + \operatorname{im} T$ form a basis for coker T. Let $S : \mathbb{C}^n \to B_2$ send $(a_1, \ldots, a_n) \mapsto \sum_{j=1}^n a_j x_j$. Then S is injective, and $B_2 = \operatorname{im} T \oplus \operatorname{im} S$. It follows that $T_1 : B_1 \oplus \mathbb{C}^n \to B_2$ sending $(x, a) \mapsto Tx + Sa$ is a bijection. By the open mapping theorem, T_1 is a linear homeomorphism. Then $\operatorname{im} T = T_1(B_1 \oplus \{0\}) \subseteq B_2$ is closed. \Box

1.2 Behavior of the index under perturbation

If dim $B_j < \infty$ for j = 1, 2, then

 $\operatorname{ind} T = \dim \ker T - (\dim B_2 - \dim \operatorname{im} T) = \dim B_1 - \dim B_2.$

Remarkably, for Fredholm operators, this property also extends to a similar property in the infinite dimensional case.

Theorem 1.1. Let $T \in \mathcal{L}(B_1, B_2)$ be a Fredholm operator. If $S \in \mathcal{L}(B_1, B_2)$ is such that $||S||_{\mathcal{L}(B_1, B_2)}$ is sufficiently small, then T + S is Fredholm, and ind(T + S) = ind T.

To prove this, we have a lemma.

Lemma 1.1. Let B be a Banach space, and let $S \in \mathcal{L}(B, B)$ be such that ||S|| < 1. Then 1 - S has an inverse (so ind(1 - S) = 0).

Proof. The Neumann series $R = \sum_{k=0}^{\infty} S^k$ converges in $\mathcal{L}(B, B)$, and R(1-S) = (1-S)R = 1.

Remark 1.2. If $T \in \mathcal{L}(B_1, B_2)$ is invertible and ||S|| is small, then T + S is invertible: $T + S = T(1 + T^{-1}S)$ is invertible if $||S|| < 1/||T^{-1}||$.

To prove the theorem, we will reduce to this case.

Proof. Write $n_+ = \dim \ker T$ and $n_- = \dim \operatorname{coker} T$. Let $R_- : \mathbb{C}^{n_-} \to B_2$ be injective and such that $B_2 = \operatorname{im} T \oplus R_-(\mathbb{C}^{n_-})$ (as we have constructed before). Let e_1, \ldots, e_{n_+} be a basis for ker T, and let $\varphi_1, \ldots, \varphi_{n_+} \in B_1^*$ be such that

$$\varphi_j(e_k) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$

for all j, k; such continuous, linear forms exist by Hahn-Banach. Let $R_+ : B_1 \to \mathbb{C}^{n_+}$ send $x \mapsto (\varphi_1(x), \ldots, \varphi_{n_+}(x))$. Then R_+ is surjective, and $R_+|_{\ker T}$ is bijective.

Let us introduce the **Grushin operator**^{\perp}

$$\mathcal{P} = \begin{bmatrix} T & R_- \\ R_+ & 0 \end{bmatrix} : B_1 \oplus \mathbb{C}^{n_-} \to B_2 \oplus \mathbb{C}^{n_+}.$$

We claim that \mathcal{P} is invertible: If $\mathcal{P}\begin{bmatrix} x\\ a_- \end{bmatrix} = 0$, then $Tx + R_-a_- = 0$ and $R_+x = 0$. Then $a_- = 0$, so $x \in \ker T$. Since R_+ is bijective on ker T, we get x = 0. For surjectivity, we want to solve $Tx + R_-a_- = y$ and $R_+x = b$. Write $y = Tz + R_-c_-$. Then $a_- = c_-$ and $x - z \in \ker T$, so $x = z + \sum_{j=1}^{n} \alpha_j e_j$. We can take $\alpha_j = b_j - \varphi_j(z)$ for $1 \le j \le n_+$.

If ||S|| is small enough, then

$$\widetilde{\mathcal{P}} = \begin{bmatrix} T+S & R_-\\ R_+ & 0 \end{bmatrix}$$

is invertible, and we introduce the inverse

$$\mathcal{E} = \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix} : B_2 \oplus \mathbb{C}^{n_+} \to B_1 \oplus \mathbb{C}^{n_-}.$$

We will finish the proof next time.

¹This terminology is not necessarily standard.